
SYNTHETIC ROPE: ADOPTION; APPLICATIONS; AND NEW DEVELOPMENTS

Dr. John Garland, PE, Consulting Forest Engineer, Prof. Emeritus, OSU, Affiliate Prof., PNASH. UW

Dr. Steve Pilkerton, PE, Manager, Student Logging Training Program, College of Forestry, Oregon State University

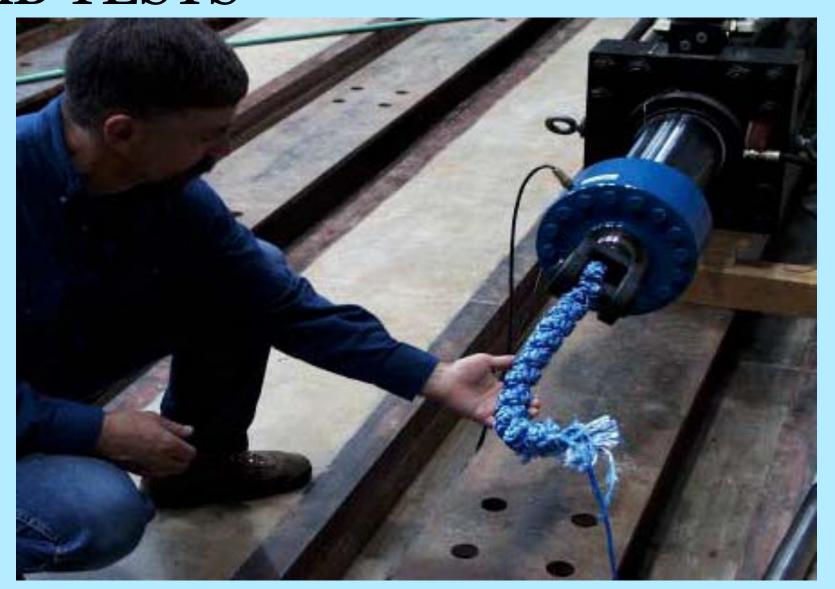
Dr. John Sessions, PE, Prof. Emeritus, University Distinguished Professor, FERM, Oregon State

Mr. David O'Neill, Mr. Mike Spear, Gannet Nets, www.gannetnets.com

PAST, NOW, FUTURE

- RESEARCH AND ADOPTION
- CURRENT APPLICATIONS
- NEW END CONNECTORS AND ROPE CONSTRUCTIONS
- FUTURE

Mention of trade names does not constitute an endorsement by OSU, UW, OROSHA....

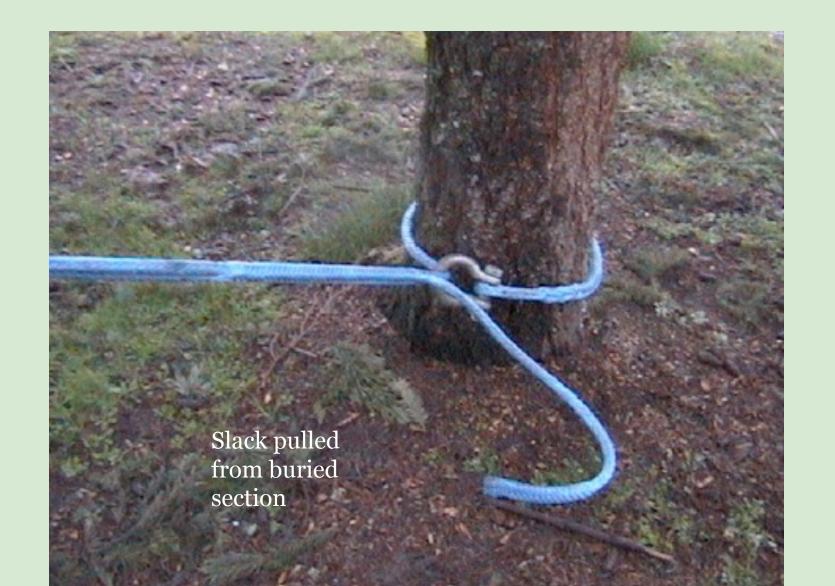


ORIGINS AND RESEARCH

- LOGGER IDEA, LLOYD ANDERSON, WA-SYNROPE AMSTEEL GREY GUYLINES, EARLY 1990's
- OSU 2000 OROSHA GRANTS USING AMSTEEL BLUE AND EQUIVALENTS
- UPSIDE: STRENGTH SAME AS STEEL, 1/10 WEIGHT, BENDING AROUND, RECYCLABLE
- DOWNSIDE: ABRASION, CUTTING, COST, HEAT/FIRE, TINEY BIT MORE ELONGATION
- ERGONOMIC BENEFITS: RIGGING CREWS, TRUCK DRIVERS, TRACTOR OPERATORS, OTHERS
- ECONOMIC BENEFITS: LINE PULLING, HAYWIRE, DRIVER WORKLIFE

FINDINGS

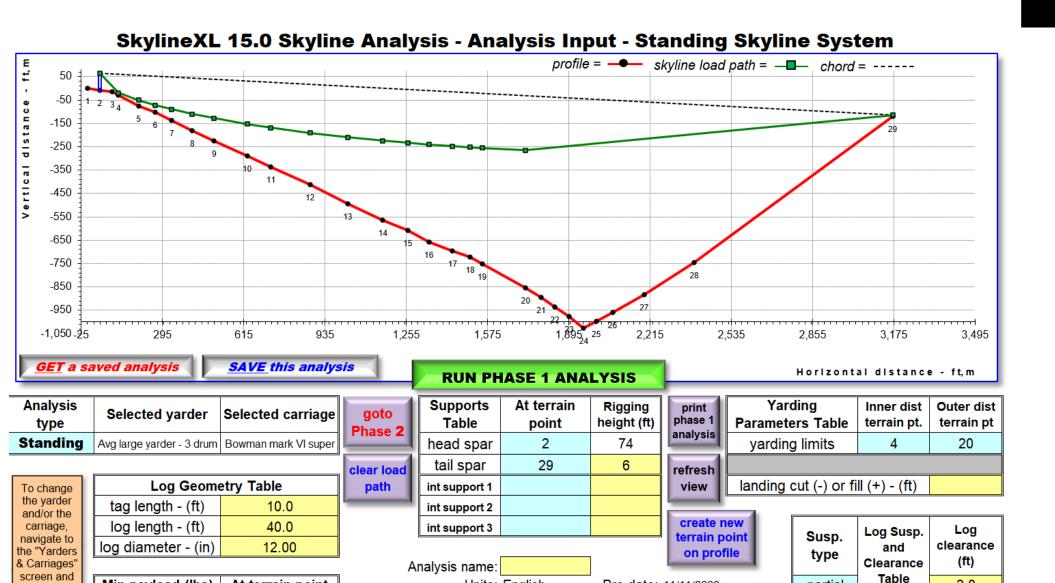
- BREAKS AS EXPECTED, BURIED EYE SPLICE FULL ROPE STRENGTH, AT OR ABOVE MANUF. BS
- KNOTS, NOT SO MUCH
- SLOTTED EYESPLICE IN FERRULE GOOD
- WRAPS REDUCE LOADING
- HEART RATE MEASURES GOOD FOR YOUNGER WORKERS; BETTER FOR OLDER WORKERS
- LOG TRUCK DRIVERS USING SYNROPE WRAPPERS
- NO MORE CATS ASS


LINE PULLED DOWN BETWEEN WRAPS ON A DRUM: STEEL IMPOSSIBLE; SYNTHETIC EASY

"WHOOPIE SLING"

ADOPTIONS

- LOG TRUCK WRAPPERS: CABLE LITE, BLP, ARBOR MAX. HOW MANY SOLD? 1 LOCATION 107 SETS IN 6.5 MONTHS
- FLEET OWNER PROVIDES WRAPPERS IF WANTED
- OLDER DRIVERS APPRECIATE 5.5 LBS v 14.5 LBS
- GUYLINES FOR TAIL & INTERMEDIATE SUPPORT TREES
- TREE PULLING LINES & WINCH LINES
- RIGGING LINES & DRONE LINES (REPLACING 80 LB COILS OF WIRE ROPE)
- INTERNATIONAL EXPERIENCE



skylineXL 15.0 FOR ANALYSIS

- COMPARE STEEL TO SIMULATED SYNTHETIC ROPE SK99 & AMSTEEL BLUE SK78 LINES
- PROFILES TYPICAL OF USERS: UPHILL/DOWNHILL
- 3 TO 1 SAFETY FACTOR: RUNNING & STANDING SKYLINE
- BOWMAN CARRIAGE REQUIRES HAULBACK
- COMPARISONS CONSIDER LIKELY BENEFITS
 - AVAILABILITY OF WOOD UNDER SKYLINE
 - UNREALISTIC LOADS NEAR YARDER NOT COMPARED
- WORKLOAD BENEFITS NOT ASSESSED

RIDGE TO RIDGE STANDING SKYLINE

SKYLINE ANALYSIS WITH NEW ROPES

- GOOD DEFLECTION WITH RUNNING SKYLINE SK99
- SHORT DOWNHILL 22% LOAD INCREASE
- LONGER POORER DEFLECTION
- DOWNHILL 41% INCREASE

- STANDING SKYLINE UPHILL
- 80% INCREASE

- RIDGE TO RIDGE
- SK99 62% LOAD INCREASE
- AMSTEEL BLUE
- 42% LOAD INCREASE

Existing and Upcoming Trials with Synthetic Rope in Logging Operations

Steve Pilkerton, CF PE PhD Oregon State University Research Forests and Forest Engineering, Resources, and Management Department

- Static:
 - Block straps, stump and lift trees
 - Jacklines, single and double tree
 - Guylines, tail and intermediate support trees, tower "snap" guyline
 - Tieback lines, using trees anchors, workers in potential failure zone

- Dynamic:
 - Skidder winch line

- Static:
 - Block straps:
 - Stumps anchors
 - Lift Trees:
 - Intermediate Supports
 - Tail Trees

- Static:
 - Jacklines, single and double tree
 - Double tree intermediate support jack line = 200 feet (60 meters) of 0.5 inch (12 mm) steel wire rope weighing 100 pounds (45 Kg).
 - Replaced with 0.5 inch ASB synrope: 12 pounds (5 Kg).

- Static:
 - Guylines, tail and intermediate support trees, tower "snap" guyline
 - End connectors synthetic also

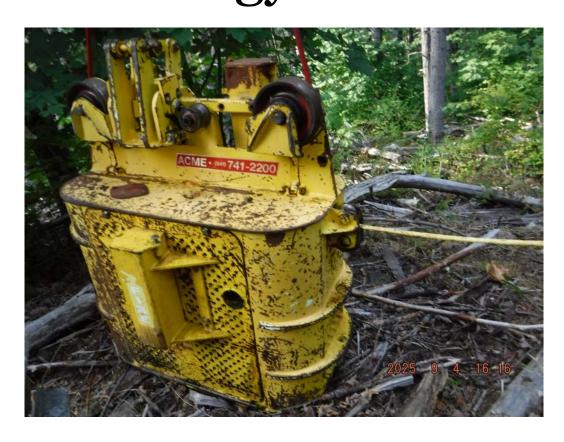
• Static:

- Tieback lines, using trees for anchors in work zone, potential failure zone
- Tieback with "twister" for additional stump anchor security
- 3/8-inch (10 mm) 12-strand synthetic rope

- Dynamic:
 - Skidder winch line
 - Set winch free spool DRAG to ZERO
 - "Like walking a good horse"
 - "Butter!"

- Dynamic:
 - Mainline on Koller 501 yarder
 - Koller SKA 2.5 manual slackpulling carriage
 - Case study with OSU Student Logging Training Program

- Replace current 0.5 inch (12 mm) swaged (compacted) mainline with Gannet Braid 12 mm synthetic rope
- 0.5 inch swaged has strength and weight of 9/16 inch (14 mm) steel wire rope
- Gannet Braid (12 strands, each strand is 12 strands)

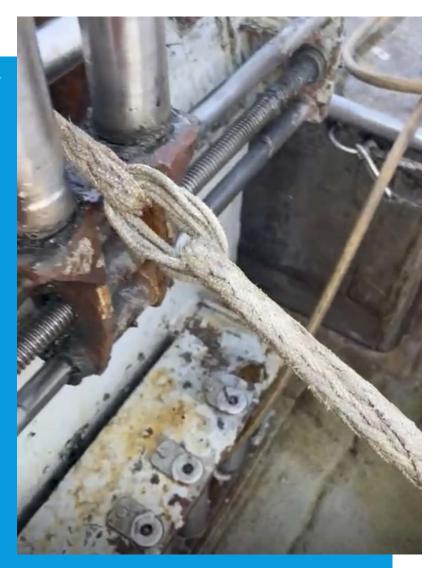

- Hypotheses:
 - Improved ergonomics,
 - less strain on workers,
 - improved cycle times,
 - improved durability over regular 12 strand construction.

- Dynamic:
 - Mainline on Koller 501 yarder and,
 - ACME 15 motorized slackpulling carriage
 - Question 1: Will 0.5 inch (12 mm) Gannet Braid synthetic mainline function with ACME carriage slackpulling device and mainline clamp?
 - Question 2: Will Gannet Braid (12 strands, each strand is 12 strands) provide sufficient durability?

David O'Neill - Founder Mike Spear - General Manager

GANNET NETS: SYNTHETICS IN LOGGING

INTRODUCTION TO GANNET NETS



INTRODUCTION TO GANNET NETS

- 30 years in fishing (1+ year in logging)
- Innovation forward -Introduction of synthetics into fishing
- How we got to today?
- Intro to Logging (via Steve Pilkerton and Dr. John Garland via OSU)
- Gannet Nets still in due diligence phase and learning from end users is paramount

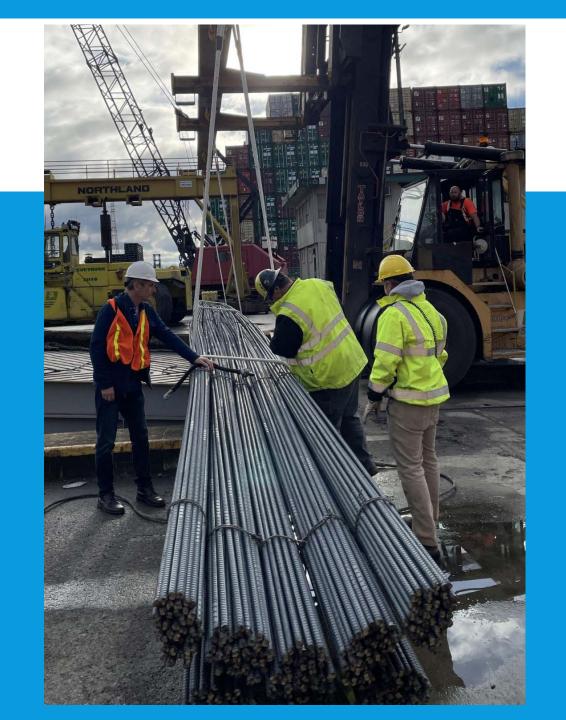
WHY SYNTHETIC OVER STEEL CABLE

Pros:

- -High strength to weight ratio
- -Reduced manual workload
- -Easier to handle and repair
- -Fire suppression
- -No jaggers (broken wire strands)
- -In fishing applications it is lasting longer than steel

Cons:

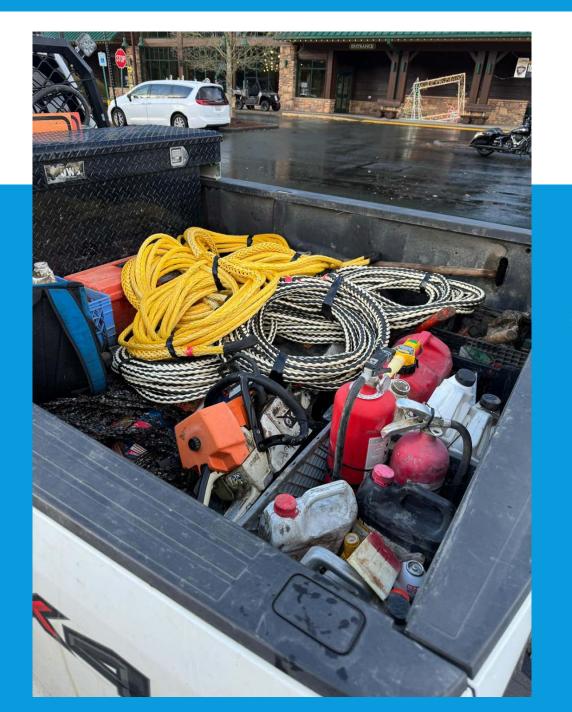
- -Low abrasion resistance (Discuss Gannet Braid Braid on Braid)
- -Costs more (pricing coming down)


WHY SYNTHETIC OVER STEEL CABLE: WEIGHT

SWAGED											_	
EIPS	Extra Impr	oved Plow S	Steel Wire				SYNTI	SYNTHETIC EQUIVALENT				
	Weight	Weight	Break load	At 3:1 SWL								
Diameter	Lbs/Foot	Lbs/2000'	Lbs			Diameter	Diameter	Weight	Weight	Break load	At 3:1 SWL	
					Short Tons at 2000lbs	mm	INCHES	Lbs/Foot	Lbs/2000'	Lbs		Short Tons at 2000lbs
3/8"	0.33	660	18500	6167	3.1	9mm	3/8"	0.033	66	29,378	9793	4.9
3/4"	1.25	2500	69000	23000	11.5	18mm	3/4"	0.12	240	95993	31998	16.0
1"	2.22	4440	124000	41333	20.7	24mm	15/16"	0.22	440	154893	58789	29.4
			This Is the weight saving factor ove			r over 3/8"	10.00	With a stre	ength increa	se of 58.8%	i.	
			This Is the weight saving factor over 3/4"				10.41	With a strength increase of 39.12%				
			This is the weight saving factor over 1				10.09	With a strength increase of 24.91%				

WHY SYNTHETIC ROPE OVER STEEL CABLE: OTHER FACTORS

- Ergonomics efficiency in workplace
- Economics
- Safety
- Retaining Work
 Force extending work tenure of truck drivers/hook tenders


ADVANCES IN SYNTHETIC ROPE

- More abrasion resistance:
 - braided braid structure: Gannet Braid
 - Trade some strength for abrasion resistance (approx 50%) - upsize
- Higher grades of UHMWPE (SK78 to SK99) – 20% lighter, 20% stronger
- Costs are down on Grade 78 or equivalent
- Great for many uses including Drone Lines

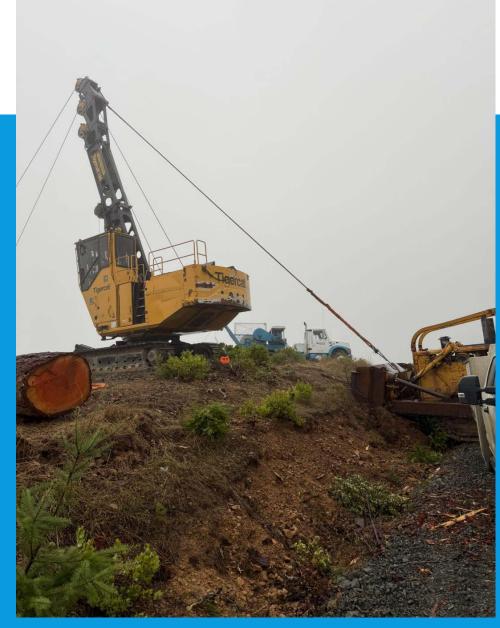
ROPE IN USE

Guylines for Janicki Logging Co. - Sedro Woolley, WA

ADVANCES IN SYNTHETIC ROPE

SUPERLINE

- Standard 12-Strand core with a custom 32-Strand Cover (e.g. polysteel, kevlar, twaron, etc.
- Cover adds abrasion resistance not strength
- ¾" 4"+ standard diameters (larger available)
- 60,000 lbs to 800,000+ lbs break strength
- See SuperLine slings at Gannet Nets table



SUPERLINE IN USE

Guyline and tailhold strap for Lone Rock Timber, Roseburg, OR

SUPERLINE IN USE

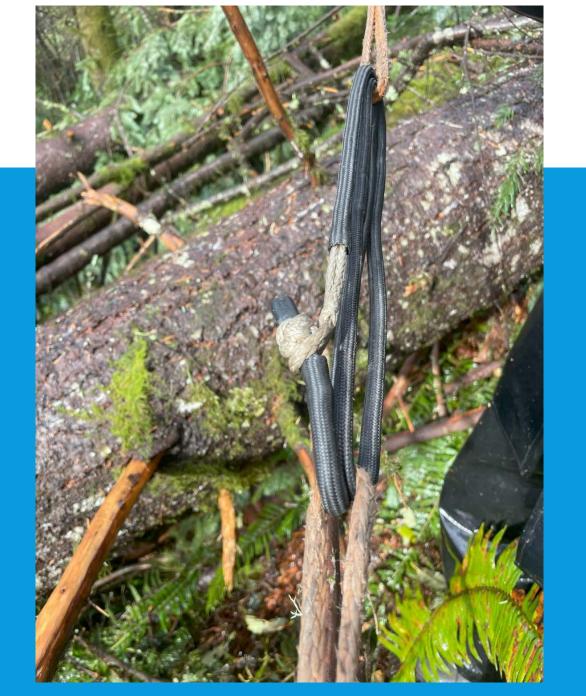
Tailhold strap for Lone Rock Timber, Roseburg, OR

DRONE LINE IN USE

3/16" drone line for NGU Logging in Gold Beach, OR

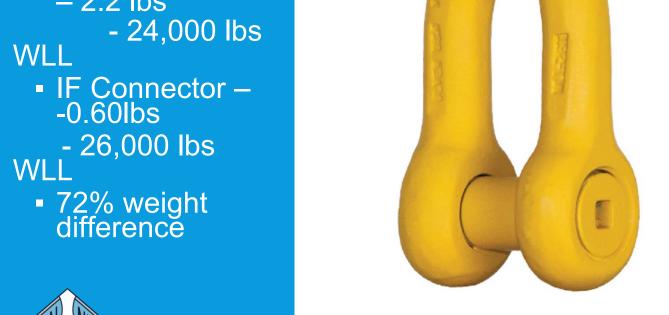
*see flight video on Gannet Nets website

SHACKLES VS CONNECTORS


- Weights vs Strength
 - 21T Skookum –11 lbs
 - 24T GN Less Than 2 lbs
 - 80% weight difference
 - Working with OSHA to add GN connectors to Div 7 rules

CONNECTORS IN USE

Connectors for haywire - Janicki Logging Co. Sedro-Wolley, WA



SYNTHETIC CONNECTORS

- Steel Option:
 - Ulven Shackle2.2 lbs

WLL

SYNTHETIC CONNECTORS IN USE

IF Connector in anchor system for Bighorn Logging in Banks, OR

LOAD SENSORS & CONNECTOR IN USE

Multi-Stump anchor system trial for Bighorn Logging, Banks, OR

SYNTHETIC BLOCKS

- Block Options
 - Skookum R630 lbs
 - GN 20-130-10 – 8.8 lbs
 - 70% weight difference
 - GN Version for use with cable – 14 lbs

SYNTHETIC BLOCKS IN USE

Lone Rock Timber, Roseburg, OR

SYNTHETIC CHAIN

- Adjustability
- Reduced Weight
- 1" Grade 100 Chain: 10lbs/ft
- Same Strength Synthetic Chain: 1.65 lbs/ft
- 83.5 % weight difference

SYNTHETIC CHAIN IN USE

Yarder guyline anchor and bridge lift system for Lone Rock Timber, Roseburg, OR

SLINGS/STRAPS

- Steel CableSling 78,000Ibs BL <50lbs
- GN Sling –110,000 lbs BL,14 lbs
- 72% weight difference
- No springback with synthetic sling

SLINGS/STRAPS IN USE

Tailhold strap for Lone Rock Timber, Roseburg, OR

LOAD SENSORS

- Fishermen are always oversizing– same as
 - logging???
 - ¾" line for winch rated for less
- Using a load cell helped our fishing client understand the potential forces on his line

LOAD SENSORS IN USE

Multi-Stump (4) anchor system test for Bighorn Logging, Banks, OR

LOG WRAPPERS

- Bishops
 Synthetic Rope
 Wrapper:
 - 8.45 lbs
- GN Synthetic Rope & Chain Wrapper:
 - 3.32 lbs
- 60.71% weight difference

WHO WE ARE WORKING WITH

- Partners
 - OSU Student Logging Training Program
 - Steve Pilkerton
 - Dr. John Garland
 - Hunter Harrill Cal Poly Humboldt
 - Brian Tuor
 - Hilltop/Bighorn
 - C&C
 - South Douglas
 - ACME
 - Boman
 - YOUR NAME HERE!

- Customers
 - Lone Rock Timber
 - Doug Schlatter
 - Blue Ridge Timber
 - Summit Attachments and Machinery
 - Weber Logging and Construction
 - Janicki Logging & Construction
 - Green Diamond
 - Coast Cutters
 - NGU Logging
 - D&H Logging

CONCLUSION

- Established technology that is still evolving All products showed can be sized up or down and configured to needs
- Gannet is here for innovation. We have the right materials and look to logging end users to help understand the applications.
- Gannet is here to work with you on solutions. Our manufacturers are dedicated to R&D
- Let's brainstorm together on solutions that make logging safer, more efficient and productive

GANNET NETS CONTACT INFO

Thank you.

Questions?

Visit Us at our table to see these products and more.

WWW.GANNETNETS.COM

DAVID O'NEILL - DAVID@GANNETNETS.COM

MIKE SPEAR - MIKE@GANNETNETS.COM

"Creativity is thinking up new things. Innovation is doing new things."

Theodore Levitt (1925 – 2006), Renowned economist

"They who ask a question are a fool for 5 minutes. They who do not ask a question remain a fool forever."

Unknown, An ancient Chinese proverb

FOR MORE INFORMATION SEE OR CODES NEXT SLIDE

Resources in English and Spanish

http:deohs.washington.edu/pnash

Critical Incident: Crew Stress Debrief | Incidente Crítico: Diálogo con el grupo de trabajadores

DOWNLOAD NOW >

Logging Rigging Guide | Guía por Aparejo en el Madereo

DOWNLOAD NOW >

PPT Presentation -Bilingual Pesticide Labels for Reforestation Worker Safety

DOWNLOAD NOW >

Forestry Safety ACE Training Worksheets

ACE stands for: situational **A**wareness, safety **C**ulture, and personal protective **E**quipment.

VISIT OUR PARTNER >

NOTES ON UHMW

- All ropes, slings, connectors etc are certified for break load / mill cert via internationally recognized agencies; IQM, EKH, ISO 9001, VCA, VGM
 - o Copies of certifications available upon request
- Detailed retirement criteria and inspection procedures are supplied with all lines, slings, connectors, etc.
- UHMW is resistant to UV and Chemicals (Acids, Alkalai, Fuels, Oils, De-Icing, Solvents, Cleaning Fluid, Insecticide, Fire Extinguishment)

CERTIFICATIONS

Southernpropes

FISHING INDUSTRIAL MINING MILITARY YACHTING

FAX:(021) 447-8207 PHONE:(021) 448-4978 P.O.Box 65, Woodstock, 7915 CapeTown SOUTH AFRICA

MILL CERTIFICATE OF FIBRE ROPES

It is hereby certified that the products described herein have been produced in accordance with the design, performance and quality standards stated in our Quality Assurance Manual and as cited in our Catalog. This document certifies only that this product has been manufactured and inspected as described herein and no implication, certification or warrantee is made that this product is suitable for a particular use.

Customer Name : Ammeka Industries CC

Customer O/No : PO129465

Customer Contact Details : Charmaine Coetzee

Product Description : Soft Shackle

: Super 12 - Stealth Fiber **Product Construction**

: 6 x 1.5m Soft Shackles

: Soft Shackle 200T BL x 1.5m Super 12 (50T SWL / Safety Factor 4:1)

: B/SOFTSH/50TSWL/1.5 Product code

Break Load : +/- 200 Metric Tons (Under Laboratory Conditions)

(The construction of a rope can be altered to improve its performance in practical applications which could affect the maximum break load achieved under test conditions.)

MILL CERTIFICATE NO: SR231734

Serial Number/s: 626018.626020.626022.626019.626021.626017

Unique Number/s: 0186983,0186921,0186986,0186952,018905,018926

DATE: 15/03/2024

TEST CERTIFICATE

Southern Ropes (Pty) Ltd

4 Beach Rd, Woodstock, Cape Town, 7915

Southern propes Tel: +27 (0)21 448 4978 Fax: +27 (0)21 447 8207

Email: testing@sropes.co.za

Website: www.southernropes.com

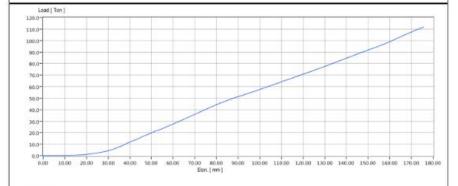
Peak Load :

Sample (Actual Tests) Address : Southern Ropes Paarden Eiland

Customer PO # :

Order #:

Item Serial # : SR1579 Test Date : 04/29/25 Test Time : 12:47:55 Description: 36mm - 100T


Customer Notes

Test Report #: Test Type:

0429251580 Break Test 111.825 Ton

Peak Elongation : 175.724 mm Test Duration : 0:1:50.5 (H:M:S) Test Standard ISO 2307:2019

W.L.L. : 20 T (5:1) Comments: Break test

Disclaimer:

This certificate only certifies the load applied to the aforementioned item, under test conditions. No other tests or inspections have been carried out whatsoever. Elongation values are not a true representation of strain as they do not account for the bedding down of splices and rope. A separate test must be conducted for accurate strain measurement. The end use and suitability thereof are the responsibility of the owner and/or end-user.

Test Operator:

M Taylor

INSPECTION & RETIREMENT CRITERIA

Cordage Institute International Guideline

CI 2001-04

Fiber Rope Inspection and Retirement Criteria

The Guideline that can Provide Enhanced Fiber Rope Durability and Important Information for the Safer Use of Fiber Rope

A Service of the

994 Old Eagle School Road Suite 1019 Wayne, PA 19087-1866

Any rope that has been in use for any period of time will show signs of wear and tear, some characteristics of use wil not reduce strength while others will. Ropes should be inspected on a regular basis for wear and tear and any faults / repair / retirement required.

Abrasion

Broken strands or yams caused by rough or sharp edges and surfaces (repair or replace depending on location and internal or external damage).

Glossy or Glazed Areas

Glossy or glazed areas are signs of heat damage. These areas will have lost strength and the areas around the melted fibres may also be affected (replace rope).

Discolouration

Keep an eye out for discolouration that could be caused by chemical contamination. Assess what has caused the discolouration and replace if brittle or stiff.

Inconsistent Diameter

Inspect all flat areas or lumps, this could be core or broken internal strands damaged from overloading or shock loads. Replace rope.

Inconsistent Texture

If the rope has an inconsistent texture or is stiff, this could be a build-up of dirt or grit embedded in the rope or shock load damage - replace rope.

CHECKLIST				
IF THE ROPE IS SHOWING SIGNS OF ONE OR MORE OF THE BELOW:	Repair	Discard		
Outer cover damaged, including eyes		Yes		
Rope diameter reduced by abrasion		Yes		
Rope sows any signs of cut strands		Yes		
Localised areas of stiffness		Yes		
Areas of heat fusion		Yes		
Discolouration (Chemical Contamination)		Yes		
Inconsistent in diameter		Yes		
8-Strand pulled strand	Yes			
8-Strand Melted or Glazed fibres - Cut and resplice	Yes			
Damaged eye - cut and resplice	Yes			

UHMW AND UV / CHEMICALS

Physical Rope Properties

DEGRADATION						
	Nylon	Polyester	HMPE	Polyeth- ylene Moderate		
Resistance to ultraviolet in sunlight	Good	ood	Excellent			
Resistance to aging for properly stored rope	Excellent	Excellent	Excellent	Excellent		

ROPE ABRASION RESISTANCE					
	Nylon	Polyester	HMPE	Polyeth- ylene	
Surface	Very Good	Best	Excellent	Fair	
Internal	Excellent	Best	Excellent	Good	

CHEMICAL RESISTANCE					
	Nylon	Polyester	HMPE	Polyeth- ylene	
ffects of Acids Decomposed by Resistant to most mineral acids: resistant to weak acids sulphuric acid		Very Resistant	Very Resistant		
Effects of Alkali	Little or none	No effect cold: slowly disintegrated by strong alkali at the boil	Very Resistant	Very Resistant	
Solvents in some phenolic Sol		Generally unaffected. Soluble in some phe- nolic compounds	Very Resistant	Soluble in hot chlorinated hydrocar- bons	

UHMW AND UV / CHEMICALS

	Conditions				Effect on	
Chemical	Concentration (%)	Temperature (°C)	Wetting Cycle (hr)	Storage at 65°C (hr)	Tensile Strength	
Aviation Jet A fuel (ISO 1817 test liquid F)	100	40	24	160	None	ľ
Hydraulic fluid (ISO 1817 test liquid 103)	100	70	24	160	None	
Lubricating oil (ISO 1817 test liquid 101)	100	70	24	160	None	
Solvents and cleaning fluid (Isopropyl alcohol)	100	50	24	160	None	
De-icing fluid (Ethylene glycol)	100	50	24	160	None	
Insecticide (Pyrethroid pesticide)	100	23	24	160	None	
Fire extinguishant (Protein, Fluoroprotein)	100	23	24	160	None	

